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Preface 

The California Energy Commission’s Public Interest Energy Research (PIER) Program supports 
public interest energy research and development that will help improve the quality of life in 
California by bringing environmentally safe, affordable, and reliable energy services and 
products to the marketplace. 

The PIER Program conducts public interest research, development, and demonstration (RD&D) 
projects to benefit California’s electricity and natural gas ratepayers. The PIER Program strives 
to conduct the most promising public interest energy research by partnering with RD&D 
entities, including individuals, businesses, utilities, and public or private research institutions. 

PIER funding efforts focus on the following RD&D program areas: 

• Buildings End-Use Energy Efficiency 

• Energy-Related Environmental Research 

• Energy Systems Integration  

• Environmentally Preferred Advanced Generation 

• Industrial/Agricultural/Water End-Use Energy Efficiency 

• Renewable Energy Technologies 

• Transportation 

In 2003, the California Energy Commission’s PIER Program established the California Climate 
Change Center to document climate change research relevant to the states. This center is a 
virtual organization with core research activities at Scripps Institution of Oceanography and the 
University of California, Berkeley, complemented by efforts at other research institutions. 
Priority research areas defined in PIER’s five-year Climate Change Research Plan are: 
monitoring, analysis, and modeling of climate; analysis of options to reduce greenhouse gas 
emissions; assessment of physical impacts and of adaptation strategies; and analysis of the 
economic consequences of both climate change impacts and the efforts designed to reduce 
emissions. 

The California Climate Change Center Report Series details ongoing center-sponsored 
research. As interim project results, the information contained in these reports may change; 
authors should be contacted for the most recent project results. By providing ready access to 
this timely research, the center seeks to inform the public and expand dissemination of climate 
change information, thereby leveraging collaborative efforts and increasing the benefits of this 
research to California’s citizens, environment, and economy. 

For more information on the PIER Program, please visit the Energy Commission’s website 
www.energy.ca.gov/pier/ or contract the Energy Commission at (916) 654-5164. 
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Abstract 

 

Four dynamic regional climate models (University of California, Santa Cruz’s RegCM3; the 
University of California, San Diego’s RSM; the National Center for Atmospheric Research’s 
WRF-RUC; and the Lawrence Berkeley National Laboratory/University of California, 
Berkeley’s WRF-CLM3) and one statistical downscaling approach (the University of California, 
San Diego’s CANA) were used to downscale 10 years of historical climate in California. To 
isolate possible limitations of the downscaling methods, initial and lateral boundary conditions 
from the National Centers for Environmental Prediction global reanalysis were used. Results of 
this downscaling were compared to observations and to an independent, fine-resolution 
reanalysis (the North American Regional Reanalysis). This evaluation is preparation for 
simulations of future-climate scenarios, the second phase of this California Energy Commission 
climate projections project, which will lead to probabilistic scenarios. Each model has its own 
strengths and weaknesses, which are summarized here. In general, the dynamic models 
perform as well as other state-of-the-art dynamical regional climate models, and the statistical 
model has comparable or superior skill, although for a very limited set of meteorological 
variables. As is typical of dynamical climate models, there remain uncertainties in simulating 
clouds, precipitation, and snow accumulation and depletion rates. Hence, the weakest aspects 
of the dynamical models are parameterized processes, while the weakest aspect of the statistical 
downscaling procedure is the limitation in predictive variables. However, the resulting 
simulations yield a better understanding of model spread and bias and will be used as part of 
the California probabilistic scenarios and impacts. 

 

 

 

Keywords: California climate, baseline simulation, dynamic, and statistic downscaling, 
reanalysis 
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Executive Summary 

Introduction 

The California Energy Commission’s Public Interest Energy Research (PIER) Program is 
developing regional climate change projections and scenarios for California that will be used for 
both state planning and research activities. Recent PIER reports have indicated a need to 
(1) further enhance the performance of regional climate models, and (2) inter-compare regional 
climate models, evaluating how well these models perform with such new enhancements when 
simulating California’s climate. The Regional Climate Model Enhancement and Baseline 
Climate Intercomparison (REBI) study presented here has a goal of quantifying and comparing 
high-resolution regional climate model simulations of historical California climate to 
observations, each other, and to statistically downscaled simulations of climate. This project is 
required prior to the Regional Climate Model Analysis of Climate Change Sensitivities project. 

Purpose  

The purpose of this study is to perform a series of numerical simulations, both dynamic and 
statistically based, to determine regional climate model spread, and to generate a baseline set of 
model climatologies as part of the scenarios projection preparations. The follow-on climate 
projections project, Regional Climate Model Assessment of Climate Change Sensitivities, will 
use these results for better-understanding model biases, signal-to-noise, and to reduce model 
uncertainties. 

Project Objectives  

The objectives in the study were to enhance and develop California regional climate models and 
perform intercomparisons, as the first phase of the sensitivity analysis of projected climate 
change in California at fine scale. This analysis is of high value to the climate science research 
community, impact assessment community, and California policy makers.  

Project Outcomes  

The primary project outcome is a set of enhanced and intercompared regional climate models 
with an analysis of model spread, and diagnostic analysis for a subset of variables. The 
integration period, 1980–1989, has been examined for model performance and skill, and 
represents the baseline for impacts modeling and assessment. Variables that have been 
analyzed include: total precipitation, maximum and minimum daily surface air temperature, 
surface specific humidity, wind speed, snow water equivalent, and surface energy budgets. 

Conclusions  

The dynamically and statistically downscaled regional climate model results discussed in this 
report will be included in the development of probabilistic scenarios, and multiple variables in 
ensemble form will be applied to California impacts studies. 
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1.0 Introduction 

California’s climate, hydrology, and ecology represent one of the most diverse and sensitive 
regional systems in the United States, with over 1100 miles of coastline, desert regions, irrigated 
agricultural regions, and mountainous snowpack water storage regions. It has been determined 
in previous studies (Field et al. 1999; Hayhoe et al. 2004; IPCC 2001, 2007; USGCRP 2001; 
California Regional Assessment 2002; California Regional Scenarios 2006) that California’s 
ecosystems, water resources, and infrastructure are at significant risk due to heat-absorbing 
atmospheric greenhouse gases (GHG) in the form of carbon dioxide, methane, nitrous oxide, 
and others from fossil fuels sources. In 2006 the California State Legislature passed, and the 
governor signed into law, Assembly Bill 32 (AB 32), the California Global Warming Solutions 
Act of 2006.1 AB 32 establishes a “first-in-the-world comprehensive program of regulatory and market 
mechanisms to achieve real, cost-effective reductions of greenhouse gases.” (CARB 2008). It makes the 
California Air Resources Board (CARB) responsible for monitoring and reducing GHG emission 
reduction targets in California to 1990 levels by 2020. An Executive Order signed by the 
governor on June 1, 2005, mandates the California Environmental Protection Agency (CalEPA), 
in collaboration with other state agencies, to prepare biennial science reports on the potential 
impacts of climate change in California. CalEPA has requested the California Energy 
Commission’s Public Interest Energy Research (PIER) Program to lead the preparation of these 
reports because PIER has had a strong climate change research sub-program since 2001. The 
biennial reports include impact studies to water supply, public health, energy, agriculture, the 
coastline, and forestry.  

As an initial step towards fully quantifying the range of climate variability and change in 
California at high spatial resolution (10 kilometers, km), one statistical and four dynamical 
downscaling approaches are intercompared and evaluated against observations. The rationale 
here is to test the usefulness and appropriateness of the different climate downscaling 
techniques based on observational data availability, computational constraints, climate 
stationarity assumptions, and model parameterizations. Each approach has uniquely different, 
and in some cases similar, advantages and disadvantages. 

Climate model evaluation and intercomparison provides quantitative evaluations of model and 
process performance using observations and other models as standards for comparison. It 
allows for model advancements, leading to reduced errors and improved model performance. 
Climate model intercomparisons are essential for understanding how model-simulated 
projections of the future compare with the present. Improved model performance will facilitate 
better decision making of the actions needed for climate change mitigation, adaptation, and 
coping strategies.  

Since 1989, the U.S. Department of Energy’s (DOE’s) Program for Climate Model Diagnostics 
and Intercomparison (PCMDI) has led the intercomparison of global-scale general circulation 
models (GCMs). The PCMDI mission is to develop and apply improved methods and tools for 
the diagnosis and intercomparison of GCMs, and this effort represents a quality control 
gatekeeper for the GCMs that are part of the Intergovernmental Panel on Climate Change 
(IPCC). While GCMs provide an important understanding of the climate on subcontinental and 

                                                
1
 Assembly Bill 32 (Nuñez), Chapter 488, Statutes of 2006 
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larger scales, they are unable to resolve fine-scale climate features and forcings that are of 
importance at local-to-regional scales; hence, downscaling techniques have and will continue to 
be an essential element of climate change impacts analysis. 

Two main approaches are used to downscale global climate data: dynamical downscaling and 
statistical downscaling. 

Dynamical downscaling uses a fine-resolution climate model having a global or smaller domain to 
produce fine-scale information. Physical knowledge comes from laws describing the 
atmosphere included in the fine-resolution model. If it has a limited geographical domain, this 
model is driven by initial and boundary conditions from a coarse simulation with a larger 
(typically global) domain. Required boundary condition data for limited-domain models 
includes three-dimensional atmospheric fields at three-hour or six-hour intervals. This 
approach involves a large data volume, and few climate modeling centers save the simulated 
three- and six-hour spatial output fields. Thus, most coarse-resolution climate simulations are 
restricted in the scale in which the output can be downscaled using a nested, limited-domain 
model. This restriction on such large-scale boundary conditions has recently been studied in 
detail by Yoshimura and Kanamitsu (2008), who proposed a method to relax this restriction. 
Global high-resolution simulations can be performed using only monthly mean sea-surface 
temperatures and sea ice concentrations as boundary data; this is available from virtually all 
simulations. Thus this technique is widely applicable; and it provides global downscaled data. 
It is, however, much more computationally demanding than using a limited-domain model. 
Dynamical downscaling in general is computationally demanding, but produces a complete 
range of physically consistent meteorological output. Because of this physical consistency, the 
output is useful for research on physical mechanisms of the local scale climate change. The most 
important shortcoming of dynamical downscaling is errors in the dynamical models (both 
nested and large-scale). Many of the model errors are systematic, but can be removed by using 
the differences or anomalies. This approach is frequently used in the study of changes due to 
global warming.  

Statistical downscaling uses empirical, data-driven techniques to produce fine-scale climate 
information (Wilby and Wigley 2000). In the constructed analogues approach (Zorita and Storch 
1999), relationships between local- or regional-scale climate features and large-scale features are 
developed by analyzing observations. Key assumptions in this approach are that the future 
climate patterns can be derived from linear combinations of the weather from a library of 
previously observed patterns, and that climate changes predicted using coarse-resolution 
models are correct at fine spatial scales. In another method, the delta change or perturbation 
approach, changes in key climate quantities (such as predicted temperature increases) from a 
coarse simulation are added (e.g., for temperature) or multiplied (e.g., for precipitation) to fine-
scale historical climate data, producing a fine-scale future temperature or precipitation 
prediction. An advantage is that using predicted changes from climate models results in a first-
order elimination of biases from these models. Some analogue approaches also include bias 
correction (e.g., Imbert and Benestad 2005). Statistical downscaling is computationally 
inexpensive, but in general produces results for only a few meteorological quantities (e.g., 
precipitation and near-surface temperatures). Another disadvantage of statistical downscaling 
is the difficulty of uncovering physical mechanisms behind unexpected results. 
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An important difference between dynamical and statistical approaches is that the latter, being 
empirical, does not require knowledge or accurate characterization of specific climate forcings; 
poor knowledge of these forcings (e.g., aerosols and land-use effects) can limit the fidelity of 
dynamically based simulations. This can be a disadvantage, however, if forcings change 
significantly between the period used for the development and calibration of the statistical 
model and the period being simulated; hence significantly large changes in forcings may violate 
the stationarity assumption fundamental to statistical approaches. 

In 2003, the California Energy Commission (Energy Commission) sponsored a series of road-
mapping exercises, including the report, Modeling Regional Climate Change in California (Gates 
2003). This report recommended the design of a regional climate model intercomparison 
protocol, control climate simulations, an evaluation and analysis of downscaling methods, 
development of a California database, and the development of a database access system. The 
present study builds upon the report recommendations, two previous California investigations 
to intercompare climate model physics and dynamics (Duffy et al. 2006; Kueppers et al. 2008), 
and several past and ongoing regional climate investigations, such as the Program to 
Intercompare Regional Climate Simulations (PIRCS, Gutowski et al. 1988, 1998, 2000; Takle et al. 
1999), the North American Regional Climate Change Assessment Project (NARCCAP: Mearns 
et al. 2004), an Asian domain intercomparison (Leung et al. 1999; Fu et al. 2005), an Arctic 
regional climate model (RCM) intercomparison (Curry and Lynch 2002), and a European 
intercomparison (PRUDENCE: Christensen et al. 2007; Déqué et al. 2007; Jacob et al. 2007).  

The next section provides details of the approach for intercomparing and evaluating 
downscaled California regional climate and model limitations. This is followed by an analysis 
of the results, significance, and applicability of each model with regard to impact and 
adaptation studies, and lastly a discussion with concluding summary.  

2.0 Approach 

The downscaling evaluation here includes one statistical and four dynamic approaches. To best 
evaluate the multi-model performance, domains, grids, and forcings were specified to be the 
same or as similar as possible. Each RCM used similar double-nested domains and resolutions 
(Figure 1) with the same set of lateral boundary conditions and input forcings, to generate 10-
year baseline simulations for January 1, 1980, to December 31, 1989, at 30 kilometer (km) (outer 
nest) and 10 km (inner nest) resolutions. The lateral boundary conditions were evaluated to 
ensure the transition in length scale between the GCM (200 km) and the 30 km simulation did 
not impose jump discontinuities. An exception is the Regional Spectral Model (RSM), which 
downscaled directly from 200 km resolution global reanalysis to 10 km resolution.  

Each model output includes a common set of variables and fluxes, mapped onto identical grids 
for analysis. This procedure follows the PCMDI protocols used for the IPCC Fourth Assessment 
Report (AR4) intercomparisons. The statistical methods used the same inner domain as shown 
in Figure 1, but produced only precipitation and temperature fields at daily to monthly time-
steps. In Subsection 2.1 dynamic and statistical methods used in this study are discussed; a 
discussion of input data follows in Subsection 2.2. 
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Figure 1. Model domains used in this study. A. Western United States and Eastern 
Pacific Ocean, 30 km resolution, [139W21N x 104W51N], B. California, Nevada, 
Eastern Pacific Ocean, 10 km resolution, [128W31N x 113W44N] 

2.1. Dynamic and Statistical Downscaling  

The Weather, Research, and Forecasting (WRF) model was developed at the National Center for 
Atmospheric Research (NCAR) by Skamarock et al. (2005). It has been enhanced by Lawrence 
Berkeley National Laboratory (LBNL) researchers to include the NCAR Community Land 
Model version 3 (CLM3: Oleson et al. 2004), an advanced land surface scheme with sub-grid 
representation, advanced snow processes, dynamic vegetation with plant functional types, and 
lateral hydrologic flow capability (Jin et al. 2007). In the version used in these studies, plant 
functional types are turned off and lateral hydrologic flow is a topographic distribution index 
representation for soil moisture redistribution per grid cell. We are not using any streamflow 
routing in this version. The enhanced code, WRF-CLM3, is set up with the Grell and Devenyl 
convection parameterization for cumulus clouds (Grell and Devenyl 2002), the Yonsei 
University planetary boundary layer (PBL) scheme (Hong and Pan 1996), and the Medium 
Range Forecast Model scheme (Mellor and Yamada 1982). The microphysics scheme used here 
is the WRF Single-Moment 3-class (WSM3) scheme (Hong et al. 2004). The Rapid Radiative 
Transfer Model (RRTM) is based on Mlawer et al. (1997) and is used for describing longwave 
radiation transfer within the atmosphere and to the surface; the shortwave radiation scheme 
was developed by Dudhia (1989) and further advanced by Chou and Suarez (1999). 

The Regional Spectral Model (RSM: Juang and Kanamitsu 1994) originates from the regional 
spectral code originally developed at the National Centers for Environmental Prediction 
(NCEP). The code was updated with greater flexibility and much higher efficiency (Kanamitsu 
et al. 2005) at the Scripps Institution of Oceanography (SIO). The RSM utilizes a spectral method 
(with sine and cosine series) in two dimensions. A unique aspect of the model is that the 
spectral decomposition is applied to the difference between the full field and the time-evolving 
background global analysis field. The model configuration and the downscaling methods are 
basically the same as that of CaRD10 (10 km California Reanalysis Downscaling; Kanamitsu and 
Kanamaru 2007), where the scale-selective bias correction (SSBC, Kanamaru and Kanamitsu 
2007) was applied with a nudging scheme to the Reanalysis large-scale thermodynamic fields 
for a 10 km resolution simulation. Major updates from the CaRD10 project are: inclusion of the 
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Noah land surface model (Ek et al. 2003) with four soil layers instead of the two-layered Oregon 
State University land surface model (Pan and Mahrt 1987); incorporation of cloud water and 
cloudiness as prognostic variables (Tiedtke 1993; Iacobellis and Sommerville 2000) for better 
precipitation prediction; a larger domain size: 19.506°– 50.193°N, 135.314°–103.587°W, which is 
180% and 175% larger in zonal and meridional directions than those of the CaRD10, to improve 
summer time monsoon flow from the Gulf of California; narrower lateral boundary nudging 
zones, based on the Davies scheme (1983) and extends only 2.5% of the total width in each of 
four lateral boundaries instead of 11.5% in CaRD10 to increase the useable domain. Similar to 
WRF-CLM3, RSM does not include a routing scheme. 

The International Center for Theoretical Physics (ICTP) Regional Climate Model, RegCM3 (Pal 
et al. 2007), is a third-generation regional-scale climate model derived from the National Center 
for Atmospheric Research-Pennsylvania State University (NCAR-PSU) MM5 mesoscale model. 
RegCM3 uses the same dynamical core as MM5. RegCM3 also includes the Biosphere-
Atmosphere Transfer Scheme (BATS1E: Dickinson et al. 1993) for surface process representation 
and the CCM3 radiative transfer package (Kiehl et al. 1996). RegCM3 documentation and source 
code are available at the ICTP, Trieste, Italy site.2 In this experiment, RegCM3 was configured 
with the Grell cumulus scheme (Grell 1993) utilizing the Fritsch and Chappell closure scheme 
(Fritsch and Chappell 1980) and the Holtslag boundary layer scheme (Holtslag and Boville 
1993). This version of Biosphere-Atmosphere Transfer Scheme (BATS) has 22 land-cover types 
and 3 soil layers, with rooting depth and other soil properties linked to land cover type. Similar 
to the other models used here, it does not include a routing scheme. Table 1 provides a 
summary of the dynamic downscaled model settings.  

                                                
2 www.ictp.trieste.it/RegCNET/model.html.  
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Table 1. Summary of RCM settings 

 RegCM3 RSM WRF-CLM3 WRF-RUC 

Land Surface  BATS1E 
Dickinson 1993 

NOAH 
Ek et al. 2003 

CLM3 
Oleson et al. 2004 

RUC 

Soil Moisture 
Modification for 
Irrigation to 
“activate”  

75% Field Capacity 
during the growing 
season 

Saturation at all 
time steps 

None None 

Microphysics Orville and Kopp 
1977 

Iacobellis and 
Somerville 2003 

Lin et al. 1983 WSM 3-class 
simple ice scheme 
(Hong et al. 2004) 

Shortwave 
Radiation 

Kiehl et al. 1996 Chou and Lee 
1996 

Chou and Suarez 
1999 

Chou and Suarez 
1999 

Longwave 
Radiation 

Kiehl et al. 1996 Chou and 
Suarez 1994 

RRTM  
Mlawer et al. 1997 

RRTM  
Mlawer et al. 1997 

Planetary 
Boundary  

Holstag and Boville 
1993 

Hong and Pan 
1996 

Mellor-Yamada 
1982 

Mellor-Yamada 
1982 

Cumulus Grell 1993 Moorthi and 
Suarez 1992  

Grell and Devenyl 
2002 

Kain-Fritsch 
scheme 
Kain 2004 

 

An earlier analysis of the role of irrigation settings on these RCMs was reported (Kueppers et al. 
2008, Snyder et al. 2006) and will be referred to here in the discussion section. 

The Constructed Analogues (CANA) statistical downscaling approach is based on the methods 
developed by van den Dool (2003) and has been presented by Hidalgo et al. (2008). The CANA 
method is based on the matching of daily Reanalysis weather patterns (e.g., precipitation and 
temperature) with 1/8 degree observational (12 km) weather patterns in an independent 
“library” of matching pairs of coarse-scale (Reanalysis) and corresponding high-resolution 
1/8 degree (12 km) weather patterns (Maurer et al. 2002 data) for the same day. The 30 most 
similar historical patterns (analogues) to the Reanalysis pattern to be downscaled are used in a 
linear regression to produce a coarse-scale estimate for each day. The regression coefficients 
obtained from the coarse-scale analysis for each day are then applied to the corresponding 30 
high-resolution analogue weather patterns to produce daily-downscaled estimates at 1/8 
degree (Hidalgo et al. 2008). In this way, a large fraction of the daily variability of the weather 
patterns at high resolution is conserved. A comparison of the CANA method with the statistical 
method of bias correction following with spatial downscaling (Wood et al. 2004) can be found in 
Maurer and Hidalgo (2008). For the Regional Climate Model Enhancement and Baseline 
Climate Intercomparison (REBI) analysis the library of previously observed patterns was 
selected from the period 1950–1978 so the downscaling period (1979–1999) is independent of the 
library used to derive the analogues.  

In Hidalgo et al. (2008), the linear predictor equations were trained and validated for the period 
1950–1999, where the even-numbered years were used for model calibration and odd-number 
years were used for model cross-validation. The CANA method showed very good skill (day to 
day validation correlations of the downscaled estimates with the observed data on the order of 
0.7 or more) in downscaling coarse-scale temperature to a 12 km grid, and in reproducing 
precipitation in the coastal states of the western United States, with less skill in the interior 
regions (Hidalgo et al. 2008). 
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2.2. Input Data 

The National Centers for Environmental Prediction-Department of Energy Atmospheric Model 
Intercomparison Project II Reanalysis (NCEP/DOE-2) data were used for the dynamic model 
initial and lateral boundary conditions, as well as for training and validation of the CANA 
statistical model. The Sea Surface Temperatures (SSTs) were initialized with the Atmospheric 
Model Intercomparison Project (AMIP) dataset for WRF and RegCM, while the European 
Reanalysis 40-year SST data (ERA-40)3 was used for the RSM lower boundary conditions over 
the Pacific Ocean. This SST (Fiorino 2004) is a combination of the SST analyses from the Hadley 
Center, the United Kingdom Met Office (monthly mean HadISST, prior to and including 1981) 
and NCEP (weekly NCEP 2DVAR SST, after 1982 inclusive). It was cleaned up at the ice edges 
and interpolated to daily analysis using the mean conserving interpolation scheme (Taylor et al. 
2000).  

Model results are evaluated with the Parameter-elevation Regressions on Independent Slopes 
Model (PRISM) climatologies for California temperature and precipitation with monthly, 
yearly, and event-based climatic parameters (Daly et al. 2001, 2008). PRISM is a unique 
knowledge-based system. It includes point observations, digital grid estimates, digital elevation 
maps, and expert knowledge of climatic extremes, including rain shadows, coastal effects, and 
temperature inversions. It uses climate mapping technology and climate statistics to provide a 
continuous, quantitative confidence probability for each observation, estimate a replacement 
value, and confidence intervals. The PRISM data has been subjected to categorical quality 
checks to ensure there is observational validity (Daly et al. 2004). While not exact, the resulting 
PRISM climatologies are often taken as near-truth data sets and are used for numerous 
applications, including impacts analysis. Other simulated quantities are evaluated against the 
North American Regional Reanalysis (NARR)4 dataset. NARR is a fine-resolution reanalysis 
data product based on the Eta limited-domain model. Noteworthy features of NARR include 
direct assimilation of precipitation and some radiative fluxes. We use NARR to compare 
simulated quantities such as radiative fluxes for which adequate observations are not available. 
Figure 2 indicates that PRISM minus NARR results in (A) PRISM (NARR) precipitation being 
overestimated (underestimated) along the mountain regions, (B) PRISM (NARR) slightly cool 
(warm) in the Central Valley for DJF Tmax, (C) PRISM and NARR JJA Tmax very close, except a 
few grid cells, and (D) PRISM is generally cooler than NARR for JJA Tmin. 
 

                                                
3
 www.ecmwf.int/research/era/do/get/era-40.  

4
 www.emc.ncep.noaa.gov/mmb/rreanl/.  
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A  B  

C  D  

Figure 2. Climatological (1980–1989) differences between the PRISM and NARR for 
(A) NDJFM precipitation, (B) DJF Tmax, (C) JJA Tmax, and (D) JJA Tmin 

 

Results of all REBI project simulations were converted to a common format that adheres to 
standards developed for the climate and weather forecast (CF) community. The CF conventions 
specify standard variable names, dimension names, coordinate systems, calendars, metadata, 
etc.5 REBI model outputs were interpolated in the vertical to a standard set of atmospheric 
pressure levels. For certain analyses, such as calculating inter-model differences, results were 
interpolated to a common latitude/longitude grid having approximately the same 10 km grid 
spacing as the original RCM coordinate grids (1/12 degree in latitude and longitude). 

3.0 Results 

Model results, bias, and uncertainty are presented and discussed, however due to the time and 
resource constraints of this project, uncertainty reduction is not reported here, only model 
spread. In the following subsections we provide a discussion on model differences with 
preliminary analyses of the mechanisms causing these differences. Detailed process-level 
analysis is not comprehensive in this report, it is ongoing, and is not the main objective here. 
                                                
5
 http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.0/cf-conventions.html.  
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3.1. Climatological Means of Temperature and Precipitation 

Three dynamic downscaling models (RegCM3, RSM, WRF-CLM3), one statistical downscaling 
method (CANA), and a commonly used, off-the-shelf, version of WRF (Weather, Research, and 
Forecasting-Rapid Update Cycle [WRF-RUC]), are evaluated and intercompared for model skill, 
as forced with the NCAR/NCEP Reanalysis II fields for 1980–1989. The climatological 10-year 
mean maximum and minimum 2 meter (m) air temperature and cumulative precipitation are 
shown for the winter and summer periods in Figures 3–5.  

Figures 3a and b show spatial maps of California 10-year climatologies for June–August (JJA) 
daily maximum and minimum 2 m air temperature (Tmax, Tmin), respectively. The JJA maximum 
temperatures are well represented, with all models reproducing the large-scale spatial pattern 
of observed temperatures within the study domain. Nonetheless, all models have some local 
biases. CANA and WRF-CLM3 show small cold biases along coastal regions. RSM is too warm 
(by 3°C–5°C) throughout the Central Valley, South Coast, and Sierra Nevada regions. WRF-
CLM3 has a strong cold bias in part of the Sierra Nevada, and is consistent with the existence of 
year-round snow (discussed below) in that region. RegCM3 shows overestimates near the 
coasts and in the south (i.e., 3°C–7°C) over a smaller area than WRF-CLM3, but is too cold in the 
Central Valley. This may be a partial result of the representations for irrigation (Table 1). 
Irrigation is difficult to include in models for CA since each farming region, each farmer, and 
each crop type has different irrigation requirements by season, and weather-year type. As noted 
below, this results in excessive latent heat fluxes, and hence a local cold bias. WRF-RUC shows 
larger JJA Tmax overprediction for the Central Valley than WRF-CLM3. Similarly, the JJA 
minimum 2 m air temperature shows that the CANA performs well, with very slight 
underestimates along a north-south inland region, RSM overestimates Tmin near the coast and 
southern inland regions, with some overestimates in the southern foothills and mountains, 
WRF-CLM3 appears to have topographic over- and under-estimates, with significant 
overestimates in the inland south similar to RSM. RegCM has topographic over- and under-
estimates, but is somewhat less severe than WRF-CLM3. Comparison of results of WRF-RUC 
and WRF-CLM3 to those of the other models shows that the simulated near-surface 
temperatures are roughly as sensitive to the land-surface scheme as other aspects of the model. 
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Figure 3a. Seasonal mean of daily maximum 2 m air temperature 
during June–August. Results shown are climatological means for 
1980–1989. 
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Figure 3b. Like Figure 3a, except for JJA daily minimum 
temperatures.  

The winter December-February (DJF) maximum and minimum 2 m air temperatures (Figures 4 
a and b) behave quite similar to the JJA temperatures, revealing slight overestimates for Tmax in 
all cases, especially WRF-RUC and RSM in the Central Valley region. The DJF Tmin differences 
(not shown) suggest that CANA tends to have negative biases, whereas all the dynamical 
models (especially WRF-RUC) are slightly too warm. The new coupling of CLM3 to WRF shows 
a dramatic reduction in this overestimate of Tmin, but both WRF-CLM3 and RegCM are still too 
warm for DJF. These differences in near surface temperature likely involve differences in land 
surface treatments (CLM-3, Noah, and BATS) used in the three enhanced regional climate 
models. Full understanding of the temperature difference would require understanding the 
effects of differences in specified land characteristics (vegetation type, surface roughness, 
albedo, and soil type), as well as radiation fluxes and near-surface meteorological parameters. 

The cumulative November to March (NDJFM) precipitation and difference, as compared with 
the PRISM NDJFM precipitation climatologies, are shown in Figures 5a and b, respectively. 
Considerable effort was put into the evaluation and enhancement of models to optimize 
convective schemes (Shimpo and Kanamitsu 2008; Jin et al. 2008), and to evaluate the SST 
sensitivity (Jin et al. 2008). All the models capture the large-scale spatial distribution of 
precipitation, which is dictated primarily by lateral boundary data and by topographic 
variations. However, the models exhibit significant biases in precipitation amounts: RegCM3, 
WRF-RUC, and to a lesser extent RSM are too wet in Sierra Nevada Mountains and in the wet 
Northwest part of the State. The difference plots in figure 5b show that CANA has smaller 
precipitation biases than any of the dynamical models, while WRF-CLM3 has the smallest 
biases among the dynamical models, and is mainly due to the cumulus scheme, and not 
irrigation, which has a small effect in comparison. The good skill shown in CANA would be 
expected, since the CANA approach relies on observation fields. WRF-RUC and RegCM3 are 
too wet everywhere in the State except the dry Southwest region. RegCM3 and RSM seem to 
have insufficient latent heat fluxes over the ocean (figure 10), particularly off the coast of 
Northern California. This makes the model’s wet bias more remarkable, since not only is the 
incorrect amount of moisture entering the model domain, but also ocean evaporation is 
contributing too little to the water available for precipitation. 

Overestimation of precipitation in an area of large precipitation amounts is a common problem 
in high-resolution regional models. A smaller bias in WRF-CLM3 resulted when we used the 
Kain and Fritsch parameterization scheme, instead of the Grell and Devenyl (2002) scheme. A 
similar reduction in bias was observed in RSM test runs using Kain and Fritsch, as well, but the 
high computer cost of this parameterization prevented its use in this study. 
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Figure 4a. Seasonal mean of daily maximum 2 m air temperature  
during December–February 
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Figure 4b. Like Figure 4a, except for DJF daily minimum 
temperatures 

 

Figure 5a. Cumulative November–March precipitation, climatological  
mean for 1980–1989 
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Figure 5b. Cumulative November–March precipitation differences  
relative to PRISM 

 

Figure 5c. Temporal correlations between monthly mean 
precipitation  
in models and the PRISM observation-based data set, based on the 
climatological mean for 1980–1989 

 

Model-based cumulative monthly precipitation is correlated in time with the PRISM 
precipitation in Figure 5c. The statistically downscaled CANA precipitation has excellent 
correlation with PRISM, with most of the correlation space (R field) at or above 90%. The 
dynamic models cannot reach such high levels of correlation, however, RegCM3 does perform 
quite well (R > 90 percent) in the far northwest, while RSM is between 40% and 70% correlation, 
with its highest values showing up in the southern Sierra Nevada region. WRF-CLM3 has 
somewhat higher correlation values over a larger spatial domain, representing an improvement 
over WRF-RUC. 

3.2. Snow Water Equivalent  

Accurate simulation of snow is important for studies of water resources and other societal 
impacts. Snow is a particularly difficult quantity to simulate due to its sensitivity to both 
meteorology (temperature and precipitation) and land surface processes. Furthermore, even if 
the atmospheric and land surface model physics are correct, snow in California will tend to be 
under-simulated as a result of finite model resolution; this results in truncated elevations in the 
mountains, and hence overestimated surface temperatures. 
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Figure 6 indicates Snow Water Equivalent (SWE) for the 1980–1989 integration, using WRF-
CLM3, WRF-RUC, RegCM3, and COOP observations6 (NWS 2000; NRC 1998) over a Sierra 
Nevada sub-domain. (SWE results from RSM are discussed below, and CANA does not predict 
SWE). Alone among the models, WRF-CLM3 does a good job of simulating winter snow 
amounts, including year-to-year variability. As a result of this, its correlation coefficient against 
observed snow amounts (R=0.84) is higher than that of the other models. (R=0.61 for RegCM3 
and R=0.50 for WRF-RUC). WRF-CLM3’s cold bias in nighttime DJF temperatures in the Sierra 
probably does not affect simulated snow amounts, since even observed nighttime temperatures 
in this season and region are below freezing. It is striking that WRF-RUC and RegCM3 
underestimate winter snow despite over-estimating winter precipitation. On the other hand, 
WRF-CLM3, and, to a lesser extent, RegCM3 erroneously preserves some snow cover 
throughout the year, even though RegCM3 significantly underestimates winter SWE.  

 

Figure 6. Top: Spatial mean Snow Water Equivalent (SWE) in a Sierra Nevada 
subdomain for WRF-CLM, WRF-RUC, and RegCM3 with COOP observations.  

 
Other recent RCM evaluations (e.g., Leung and Qian 2003; Duffy et al. 2006) have attributed a 
significant fraction of errors in simulated SWE to deficiencies in land-surface models (as 
opposed to meteorology). Slater et al. (2001) demonstrated the sensitivity of simulated SWE to 
land surface treatments, by forcing 18 off-line land-surface models with observed meteorology. 
In our simulations, WRF-CLM3 has a strong cold bias in JJA daily maximum temperatures in 
the Sierra Nevada Mountains. Thus the erroneous persistence of snow in this simulation could 
be a consequence of meteorological biases (although the presence of snow will amplify a cold 
bias). On the other hand, RegCM3 does not have a spatially consistent bias in maximum JJA 
temperatures in the Sierra. Hence in this simulation the summertime snow is likely due to a 
land-surface problem. 

The RSM model simulated near-zero SWE at SNOTEL locations throughout the study period. 
One reason is that two SNOTEL stations are located on within grid cells in RSM that also 

                                                
6
 www.weather.gov/os/coop/coopmod.htm.  
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include a large body of water (Lake Tahoe) and this may have affected the representation of 
RSM-simulated SWE. In addition, the RSM has a warm bias in near-surface temperatures on the 
lee side of the Sierra Nevada Mountains, and most of the precipitation there falls as rain, and 
precipitation is underestimated on the lee side. The SNOTEL stations for this sub-region are 
located near Lake Tahoe which happens to be the area where the ratio of snowfall-to-
precipitation decreases to a very low value in RSM. Also, most of the SNOTEL stations are on 
the leeward of the Sierra (at least in RSM topography), so there is very little snowfall in RSM. 
The SWE over the windward side and higher elevation regions seem to be a little more 
reasonable in RSM. The model precipitation and snowfall is very sensitive to small changes in 
topography and elevation in this area and care should be taken when selecting representative 
locations for evaluation of simulated SWE. 

3.3. Spatio-Temporal Variability  

Looking beyond biases in seasonal mean quantities, Taylor diagrams (Taylor 2001) provide a 
convenient means to identify pattern correlations and RMS errors between simulated and 
observed quantities, as well as a simple evaluation of the spatiotemporal variability of 
simulated quantities. Figure 7 shows Taylor diagrams of near-surface air temperature, 
precipitation, and SWE in our simulations. These diagrams are based upon monthly mean 
quantities, mapped to a common spatial grid. The angular coordinate is the correlation 
coefficient between simulated and observed quantities, based on monthly mean results at each 
grid cell. This coordinate value evaluates if maxima and minima in the simulations occur at the 
correct times and geographic locations, but is independent of any errors in the magnitude of 
spatiotemporal variability. The latter is evaluated by the radial coordinate, which is the 
standard deviation of the results for each model for each month and grid cell, normalized by the 
same quantity in observations. (Again, this is calculated from monthly mean quantities at each 
grid cell, and thus reflects combined space and time variability.) The added value of a Taylor 
diagram is that the distance on the plot from the point marked “REF” on the horizontal axis is a 
normalized root mean square (RMS) error; thus the Taylor diagram displays three useful 
statistical measures on a two-dimensional plot. All these measures are independent of errors in 
the mean (i.e., biases), so the Taylor diagrams complement information presented so far. 

The Taylor diagrams show that all the simulations do well at representing spatiotemporal 
variability in daily minimum and (especially) daily maximum near-surface air temperatures. 
The CANA results come close to matching the best of the dynamical models (RSM) in this 
respect. For precipitation, CANA again performs better than all the dynamical models except 
the RSM, despite seriously underestimating spatiotemporal variability. The excessive 
spatiotemporal variability of precipitation in RegCM3 and WRF-RUC seen in the Taylor 
diagram is due at least in part to these models’ excessive precipitation in Northwest California 
and the Sierra Nevada mountains (Figure 6a). RegCM3 and WRF-RUC in particular 
underestimate the spatiotemporal standard deviation of SWE; this is consistent with these 
models having far too little SWE in winter. 
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Figure 7. Taylor diagrams showing WRF-CLM3, WRF-RUC, RSM, and RegCM model-
to-observation performance scores based on normalized standard deviations and 
correlations for monthly means of (a) maximum temperature, (b) minimum 
temperature, (c) precipitation, and (d) SWE 

 

3.4. Surface Energy Fluxes  

In general, apparent biases in simulated surface energy fluxes can reflect deficiencies either in 
the models being evaluated or in NARR, which we use as a standard for comparison. (Of course 
apparent biases can always result from errors in the observational standard, and we emphasize 
the possibility here since NARR is a model-based data product.). In some cases, as noted below, 
inter-model differences are at least as large as the differences between individual models and 
NARR. This implies significant biases in at least some of the models, regardless of any possible 

C 
D 
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errors in NARR. Furthermore, in some cases noted below, biases in simulated surface energy 
fluxes clearly result from deficiencies in other aspects of the simulation. 

As with other aspects of simulated climate, biases in surface energy fluxes can reflect errors in 
imposed climate forcings, as distinct from a model’s representation of physical processes. For 
example, RegCM3 shows (Fig. 8) much higher latent heat fluxes in the Central Valley in JJA 
than NARR (and the other models). This results from enhanced soil moisture in RegCM3, which 
is imposed as a way of representing the climatic effects of large-scale irrigation. Soil moisture 
content in RegCM3 was constrained to be 75% of field capacity in irrigated regions and seasons. 
This simple representation of irrigation also influences JJA sensible heat fluxes in RegCM3 to be 
lower (Fig.9b). More generally, biases in simulated seasonal-mean latent heat fluxes (Figure 8) 
appear to correlate with biases in the seasonal mean of daily maximum temperatures. 

 

  

Figure 8. Regcm3, RSM, WRF-CLM, and the North American Regional Reanalysis 
(NARR) climatological (1980–1989) surface latent heat fluxes. for (A) DJF and (B) 
JJA 

 

The increased latent heat flux just off the coast of Los Angeles during DJF is a reflection of an 
increase in Santa Ana events (Miller and Schlegel 2006; Kanamitsu and Kanamaru 2007); this is 
very clearly shown in RegCM3 and RSM (somewhat obscured in WRF), but is not found in 
NARR. This is due to the coarse resolution (32 km) used in NARR. The WRF simulation tends to 
have maximum evaporation just off the coast, which is very different from other models. 
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Figure 9. Regcm3, RSM, WRF-CLM, and the North American Regional Reanalysis 
(NARR) climatological (1980–1989) surface sensible heat fluxes for (A) DJF and (B) 
JJA 

 

Downwelling longwave radiation (RLDS) at the surface (not shown) reflects atmospheric 
temperature and moisture distributions as well as cloudiness distributions. RLDS is fairly 
similar among the models. The larger RLDS over ocean in WRF is consistent with its small 
downwelling short wave flux and is presumably due to thick clouds. Again, RSM is very similar 
to NARR, but other models have clear positive biases, particularly over land. 

NARR results for surface downwelling solar fluxes (not shown) exhibit the expected large-scale 
features: fluxes are higher in summer than winter, in winter are lower in the northern part of 
the State, and in summer are lower over the ocean. The biases in WRF-CLM3 and RSM in 
downwelling solar radiation are consistent with their biases in vertically integrated cloud 
fraction (Figure 10). The RSM model captures NARR’s large-scale pattern of downwelling solar 
fluxes well in both seasons. All the models have relatively small biases in downwelling solar 
fluxes over land in summer, indicating that they are doing an adequate job of simulating the 
relatively little cloud cover in that season and region. Over ocean, however, WRF has too little 
downwelling solar, and RegCM3 has too much. The largest cloud bias in RegCM3 is over 
Nevada, but the model’s precipitation bias in largest in California. This presumably indicates 
reduced available moisture after air masses have passed over the California mountains. Over-
land biases in downwelling solar are larger in winter; this is expected, since cloud cover, and 
hence potential for biases in cloud cover, are greater in winter. WRF-CLM3’s spatial pattern of 
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downwelling solar flux is very different from that of the other models in both DJF and JJA. This 
presumably results from cloud biases, but this cannot be verified due to lack of availability of 
cloud results from WRF-CLM3. 

The largest local biases and apparent biases in upwelling solar fluxes (Figure 10) have to do 
with deficiencies in simulated snow cover. In DJF, all three models have much stronger solar 
radiation upwelling from the surface in the mountain regions than NARR does; this is largely a 
result of insufficient snow cover in NARR, due to its relatively coarse grid spacing (32 km). 
Hence this apparent model bias primarily reflects a limitation of NARR. On the other hand, 
both WRF-CLM3 and RegCM3 have a strong local maximum in upwelling solar in the 
mountains in summer (JJA). This is a consequence of these models having year-round snow in 
this region (discussed above), which is not observed. 

 

  

Figure 10. Same as Figure 9, except showing upwelling solar radiation at the 
surface 
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Figure 11. Same as Figure 10, except showing downwelling longwave  radiation at 
the surface 

 

3.5. Geopotential Heights and Surface Winds 

The January 10-year climatological mean-monthly spatial plots of 500 millibar (mb) geopotential 
height is shown in Figure 12a. The January height fields show that all the models tend to be a 
little too high, when compared with reanalysis data. For July, the spectral RSM replicates the 
large-scale reanalysis forcing, while the RegCM3 underestimates height fields and the WRF 
appears to capture more detail associated with topographic disturbances (Fig. 12b). This is 
further seen in Figure 13, where simulated mean-monthly geopotential heights are plotted 
against the NCEP/NCAR Reanalysis heights for three points: P1 (120W, 39N, American River 
Basin), P2 (117.5W, 37N, Merced Basin), and P3 (122.5W, 38N, Russian River Basin). A general 
conclusion that can be drawn from these results is that WRF underestimates geopotential 
heights, especially when the reanalysis heights are low. 

Model-simulated and NARR reanalysis surface wind speed and direction are plotted for mean-
October 1982 (Figure 14a) and mean-January 1983 (Figure 14b). During this strong El Nino year, 
October coastal wind tend to flow northward following the land-sea interface. Each model does 
a fairly good job in capturing this detail, with RegCM showing stronger inland local circulation 
patterns. During the winter, when storminess is at a peak, the models diverge with WRF 
showing a strong onshore flow in Northern California, and RegCM exhibiting a strong offshore 
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Figure 12. Geopotential height (a) January mean-monthly distribution,  
and (b) July mean-monthly distribution 
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Figure 13. Model and Reanalysis comparison of the 500 
hectopascal (hPa) geopotential height for three locations P1. 
120W, 39N (American River Basin), P2. 117.5W, 37N (Merced 
Basin), and P3. 122.5W, 38N (Russian River Basin) 
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Figure 14. Model and reanalysis near-surface wind speed and 
direction for (a) mean-October 1982 and (b) mean-January 1983 
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flow in the southern region. These results are being further analyzed, along with a number of 
other terms, in a follow-on manuscript that is in preparation.  

To understand the time-evolution of the height fields, fields that reveal the presence of storm 
systems propagating through the study domain. Except as noted below, the models reproduce 
the large-scale patterns in surface wind components estimated by NARR. However, errors in 
individual grid cells can be comparable in magnitude to the wind component itself. In 
significant regions of Southern California, RegCM3 has an incorrect sign on one or both wind 
components. 

 

 

Figure 15. HHovmueller plots of the JJA wind speed and direction across 
latitude 38.5N. The legend along the bottom is wind speed in meters per 
second. 
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The wind speed and direction plots show in Figure 15 provide more details on the structure of 
the low boundary wind along the coastal interface, an important impact zone that has yet to be 
well evaluated. Here we show the time-evolving July through August 1983 strengthening of the 
summer wind as in flows along shore and weakens. In each model the offshore winds are near 
14 meter per hour, with RSM following the NARR reanalysis closest. Each model well captures 
the weakening as the winds arrive onshore. Again, this part of the analysis is preliminary and a 
more comprehensive study is being prepared as part of a separate report. As a further analysis 
of the model-simulated heights, we have added 1980–1989 precipitation Hovmeuller plots for 
Northern California and the Pacific Ocean at latitude 38.5 for longitudes  
-119 to -123, including the Russian and American River Basins. Figure 16 shows these results 
using PRISM, CANA, RSM, RegCM3, WRF-CLM3, and WRF-RUC. Precipitation making 
landfall is near -122 and shows good skill using CANA, WRF-CLM3, and RSM, but is 
overestimated by RegCM and WRF-RUC. The American River Basin is closer to Longitude -123, 
where WRF-CLM3 shows the highest overall skill for this location.  

 

 

 

Figure 16. Hovmueller plots of the winter precipitation across latitude 
38.5N 
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4.0 Summary and Conclusions 

Any downscaling approach is only as good as the large-scale forcing used. This study used 
reanalysis initial and boundary conditions to isolate shortcomings in the downscaling methods. 
To further isolate the effects of different model formulations, the three dynamic downscaling 
models (WRF-CLM3, RegCM3, and RSM) that we ran and analyzed were configured with 
domains and grid spacing as close as possible to identical. Unique to each model are the 
parameterization schemes for boundary layer development, cloud physics, convection, and land 
surface processes. More important is the boundary condition updating method. The lateral 
boundary conditions differ most significantly between the spectral model (RSM) and the 
Cartesian models (RegCM3, WRF-CLM3). Spectral updating is a fully internal procedure, where 
the large-scale values update the entire field, while latitude-longitude model updates are along 
a set of nudge points based on the Barnes (1973) or Cressman (1959) schemes. This difference is 
important for the way in which the internal dynamics sets up, and the degree of independence 
the RCMs have within the internal fields. Error propagation using the spectral approach may 
likely be more damped, and when evaluating with the large-scale signals are better behaved.  

As noted in detail above, all the models (dynamical and statistical) analyzed here have 
limitations. Nonetheless, they perform as well as other state-of-the-art downscaling systems, 
and all do a credible job simulating the historical climate of California. The empirically based 
CANA statistical approach is based on historical observations and hence, when compared for 
this period performs at least as well as the dynamical models. Its errors tend to be distinct from 
those of the dynamical models. The most important limitation of this approach is the very 
limited set of output variables (near-surface temperature and precipitation) that have so far 
been predicted using this method. There is no fundamental reason why additional 
meteorological quantities could not be simulated using this approach. 

The dynamical models do better at simulating the large-scale circulation (as diagnosed by 
500 mb heights), surface winds, and near-surface temperatures than parameterized quantities 
such as clouds, precipitation, and snow cover. Errors in these quantities lead to errors in others; 
for example, deficiencies in cloud amounts and snow cover results in large errors on 
downwelling and upwelling short-wave fluxes. Snow cover is particularly difficult to simulate, 
being sensitive primarily to simulated meteorology, but also to land-surface processes. None of 
the models evaluated here simulated year-round snow cover well. Among the dynamical 
models, WRF-CLM3 performs best at simulating seasonal precipitation amounts. 

Our archived data is being further analyzed and process level statistics will be developed to 
design a bias correction. Improving observations is beyond the scope of this work, but we 
acknowledge a need for continued effort in this area of research and measurement, and 
matching point and gridded data. These results will provide a benchmark to the California 
assessment process. It is hoped that the plots and discussion provided help to guide readers 
that utilize these results as part of an assessment of impacts on California due to climate change. 
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